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Abstract. The use of a symmetry to reduce the order of an nth-order differential equation 
is treated by considering the symmetry of an associated vector field. A particular choice 
of associated vector field leads to the usual extension of the Lie symmetry method. The 
possibility of other choices leads to a powerful generalisation. An algebraic classification 
of transformations arises naturally from the theory. It is shown to be equivalent to the 
geometric classification of transformations as contact and non-contact. 

1. Introduction 

Sophus Lie introduced the method of reduction of a differential equation through the 
use of a one-parameter invariance group [l]. A number of authors have generalised 
Lie’s method and applied it to a variety of problems [2,3]. Recent work has been 
prompted by the increasing prominence of non-linear problems and the need to develop 
techniques to tackle them. The work of Lie, as well as all subsequent generalisation, 
has been based on the concept of the extended transformation, which is the operation 
that extends the action of the one-parameter group from the two-dimensional space 
( x ,  y )  to an n-dimensional space ( x ,  y ,  y ’ ,  . . . , y‘””’) where n will depend on the order 
of the differential equation considered. A good exposition of this technique can be 
found in Bluman and Cole [3]. 

In this paper we present an alternative approach that has the advantage of being 
both simpler and more general than the method of the extended group. This approach 
is formulated in two steps. First, in 0 2, we consider the condition for a vector field 
(or dynamical system) to be invariant under a one-parameter group of transformations 
and show how this vector field is reduced to a ‘simpler’ vector field [4]. 

We then use the well known result that a differential equation can be represented 
as a dynamical system and obtain the reduction of the differential equation as a direct 
consequence of the reduction of the corresponding dynamical system. The representa- 
tion of the differential equation as a dynamical system is not unique. In the case of 
a second-order differential equation it depends on an arbitrary function of three 
variables Y(x,  y ,  z ) .  A particular choice of Y, namely Y(x,  y ,  z )  = z, leads to the 
previous generalisation of Lie’s work [5]. The generalisation presented here corre- 
sponds to choosing any other value for Y. 

One of the consequences of this generalisation is the possibility of always dealing 
with a one-parameter group of contact transformations. In the previous formulations, 
although most authors have restricted themselves to point and contact transformations, 
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it is possible for a one-parameter group of transformations to be neither point nor 
contact. We call such transformations non-contact transformations. It is usually harder 
to use a non-contact than a contact group for the reduction of order of a differential 
equation. However, we show in § 3 that it is always possible to choose Y(x, y, z) such 
that the one-parameter group considered is a one-parameter group of contact transfor- 
mations. We show in the appendix that our notions of point, contact and non-contact 
transformations, though introduced according to purely algebraic criteria, are 
equivalent to those introduced in modern differential geometry [6] according to purely 
geometric criteria and go beyond Lie’s original definition [ 13. In § 4 we give an example 
of the method and summarise our results. 

2. Dynamical systems and second-order equations 

Consider the n-dimensional autonomous dynamical system 

dxi /dt  = V,(X,, . . . , x,) i =  1 , .  . . , n (1) 

corresponding to the vector field V = [ V,.a/ax,]. The dynamical system is said to be 
invariant under a group of one-parameter transformations generated by the vector field 
V =  v,a/ax, if the Lie bracket (commutator) of U and V vanishes: 

[ U ,  VI = 0. ( 2 )  
When U is expressed in its comoving coordinates ul, . . . , U, it becomes a unit vector 
field, say in the direction U ,  [8], 

U = a /au ,  (3 1 

[a/au, ,  VI = (au l  V i ( u l , .  . . , u,))a/aui = 0 (4) 

where [Vi] are the components of V in the [ui]  coordinates. From (4) one concludes 
that all the V,  are independent of U]. The dynamical system in these coordinates is 

( 5 )  
which is an ( n  - 1)-dimensional system plus a quadrature for ul. A weaker form of 
invariance of V under U is obtained if 

and since ( 2 )  is a coordinate-independent relation it becomes 

dui /dt  = &(U,, . . . , U,) i = l , .  . . , n 

[U,  V ] = A V  (6) 
where A is an arbitrary function. In the comoving coordinates of V equation ( 6 )  
becomes 

av , /au ,  = A V ,  (7)  

V,  = C ( u 1 , .  . . , U n ) R i ( U 2 , .  . . , U,) (8) 

which implies that the V,  are of the form 

i =  1,. . . , n 

where the function C is common to all the components. Now only the ratio of any 
two components of V will be independent of ul. However, in representing differential 
equations by vector fields, the t parametrisation of the corresponding dynamical systems 
will be unimportant. The important object is the path traced out in the n-dimensional 
space by a solution of the dynamical system. This is given by the characteristic system 

(9) d u l l  V, = du2/ V2 =. . . =dun /  V, 
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which is independent of the t parametrisation, and depends only on the ratios of the 
components of V. Hence the weaker invariance (6) will be sufficient for our purpose. 

Now consider any second-order differential equation of the general form 

d2y/ dx2 = w ( X, y, dy/ dx) 

dx/dt  = 1 dYldt = Y(X, Y, 2) d z l d t  = Z(x, y, z )  ( 1 1 )  

(10) 

and a corresponding dynamical system 

where we have used the arbitrariness of the t parametrisation to choose the first 
component to be one. Dividing the first two equations of ( 1 1 )  gives 

dyldx  = Y(x, y, z ) .  

d2y/dx2 = Y, + Yy dy/dx+ Y, d z l d x  

(12a) 

Taking the derivative of (12a) yields 

(12b) 

where subscripts denote partial differentiation. Now equations (12) will be the original 
differential equation (10) if one chooses Z and Y so that 

w(x,y, Y ) =  Y,+ YyY+ Y,Z. (13) 

Equations ( 1 1 )  and (13) are thus equivalent to (10). 

to that for a differential equation. 
We now show how the condition of invariance of a dynamical system translates 

The conditions (6) that U = (5, 77, 5) be a symmetry of V = ( 1 ,  Y, 2)  are just 

- ( 5 x +  Y5y+Z5z)=A (14) 

(Y, + 7Yy + lYz - 77, - YvY -2qZ  = AY (15) 

(Z, + qZy + LZ, - Lx - Yy - Ztz = AZ. (16) 

5 = [ 77x + Y( 77y - 5 x 1  - 5 y x  - 77 y y  - 5, y2  + Z( 7 7 L  - Y52)11 y z  

5 Z X  + 77zy + 5 z z  = 5x  + Yly - (5x  + Y5y - LIZ - szz2. 

Using (14) to eliminate A from (15)  and (16) we obtain 

(17)  

(18) 

Equations (12), (17)  and (18) are therefore the most general equations giving the 
condition of invariance of the differential equation (10) under a one-parameter group 
of transformations U = (5, 7, 4'). 

In the case where the choice Y(x, y, z )  = z is made, (17) and ( 1 8 )  reduce to 

5 = 77, + z (  77y - 5, 1 - 5,z' + (77, - & ) w  

5 ~ x + 7 7 ~ y + 5 ~ , = 5 ~ + ~ L y - ~ 5 , + ~ 5 y - L ~ ~ ~ - 5 ~ ~ 2 .  (20) 

(19) 

These equations were given by Meinhardt [5]. 
We shall now show how the reduction of order of the differential equation occurs. 

Having chosen a function Y and a group whose generators satisfy (17)  and (18), 
suppose we can integrate the group to find the comoving coordinates u,(x, y, z), 
u,(x, y, z ) ,  u3(x, y, z). The vector field associated with the differential equation is 
V =  ( 1 ,  Y(x, y, z ) ,  Z(x, y, z))  in the x, y, z coordinate system and must be of the form 
V ,  = C(u1)Ri(u2,  u3) in the comoving coordinate system as we have seen in (8). These 
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components are related by the usual vector transformation laws which are, for the last 
two components, 

C(u , )R , (u , ,  u,)=au,/ax+ Y a u , / a y + Z a u , / a ~ =  ti2 (21) 

C( u, )R3(  u 2 ,  U , )  = au,/a, + Yau,/ay + Zau,/az = U3. (22) 

Dividing (21) by (22) and setting F(u, ,  u3) = RJR3 we obtain 

au2/ax+ Yau2lay + Zau,/az 
F ( u 2 ,  U3)=au3/ax+ ~ a U , / a y + z a u , / a z  

= du2/du3 

which is a first-order differential equation in the variables u2 and u3.  Thus, the 
second-order differential equation (10) is reduced to the first-order equation (23) by 
virtue of the invariance under the group U = ( & r ] ,  5) provided, of course, the group 
equations can be integrated to find the comoving coordinates. 

3. Point, contact and non-contact transformations 

Let us first examine equations (19) and (20) which are the invariance condition for 
the case Y = z. If 7 and 6 are assumed then (19) and (20) are two coupled partial 
differential equations for the functions 5 and W .  However, these equations will decouple 
whenever we have 

(24) r ] ,  - z& = 0. 

This will happen trivially for 6, = r ] ,  = 0, i.e. when the generators 6 and r ]  are indepen- 
dent of z. This is the well known condition for a point transformation of the plane 
[l]. We will now show that if (24) is satisfied with .& # O  and q L # O  we do have a 
contact transformation, in the sense of Lie. Such transformations have been charac- 
terised by Lie [l] as having generating functions W(x,  y ,  z )  such that 

5(x, y ,  z )  = - wz 

d x ,  Y ,  z )  = w- zwz 

l=  W,+ZW,. 

in which case (19) reduces to 

Now for 6 and r ]  given by (25) and (26) 
Conversely, integrating (24) we obtain 

r ]  = ~5 - 6 dz + G( X, y ) . I 
By setting 

r 

(27) 

we can see that (24) is automatically satisfied. 

we see that (25) and (26) are satisfied thus proving the claim that (24) is the condition 
for a contact transformation. A group of transformations whose infinitesimal coordin- 
ate functions 6 and 7 do not satisfy (24) will be called a non-contact group of 
transformations. 
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Returning to the general case, we see that (17) and (18) are also two coupled partial 
differential equations for 5 and 2 once 5, 7 and Y have been chosen. Similarly (17) 
and (18) will decouple if we have 

r l z  - y5z = 0 (30 )  

which is automatically satisfied for point transformations. More generally, if (30) is 
satisfied one can easily show by integration that there exists a ‘generalised generating 
function’ W(x, y ,  z )  such that 

5 = - wz/ y* 

r l =  W - Y W , / Y z  

which reduce to (25), (26) and (27) for Y = z, as they should. Moreover, we will show 
in the appendix that a group of transformations satisfying ( 3 0 )  coincides with the 
definition of a contact transformation as formulated in modern differential geometry. 
We are therefore justified in calling a group of transformations satisfying equation 
(30 )  a group of contact transformations. It is clear that while the fact that a group is 
a group of point transformations does not depend on the choice of Y(x,  y ,  z ) ,  
this is not the case for contact transformations. Indeed, if & = qz = 0 both (24) and 
(30 )  are satisfied: otherwise there is only one choice of Y,  namely Y = q,/&, that 
satisfies (30) once 5 and 7 have been chosen. Therefore, one speaks of a group of 
contact transformations of a specified vector field, (1, Y,  2) in our case. Also, if (30 )  
is not satisfied we will speak of a group of non-contact transformations of (1, Y,  2). 

A role for Y in selecting a convenient type of one-parameter group now becomes 
apparent. For given 5 and 7 it is always possible to choose Y so that (30) is satisfied, 
thus obtaining a contact transformation and the decoupling of equations (17) and 
(18). This is one way Y may be used in the inverse problem of determining the 
differential equations invariant under a given group. Once 5 and 7 are chosen and Y 
is chosen in order to ensure a contact transformation we then have 5 completely 
determined by (17). Finally, eliminating Z between (13) and (17) we obtain a unique 
linear partial differential equation for o whose first two characteristic equations are 
identical to those necessary to solve for the group integration itself. 

For the direct problem, that of searching for groups of invariance of a given 
differential equation, we proceed as follows. Since we are looking for contact transfor- 
mations in the generalised sense, a generalised generating function exists and we have 
5, q and 5 given be (311, (32) and (33). Hence the only equation we will have to solve 
will be equation (18) which is now a partial differential equation for the two functions 
W and Y.  For example, if we impose the two restrictions Y = z and W linear in z 
(point transformation) [ 1,4], we then have 2 = o and the only equation we must solve 
is 

- tYyz3 + ( riy - 25, - 3 5 , ~ ) ~  = 0 (34) 
where 5 and q are functions of x and y.  This particular equation was given by Bluman 
and Cole [3]. It is clear though that we obtain a different equation for each choice of 
Y and W 
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4. Example and conclusion 

In this section we give a specific example, albeit very simple, of an equation for which 
Y can be chosen to give a trivial integration even more simple than other more 
conventional choices. The equation 

d2yjdX2 = ( d y / d ~ ) ~ / 2 y  - (dy/dx)/x (35) 

is clearly invariant under the two one-parameter groups 

X + C r X  

and 

Y + PY. 
In the theory outlined above these groups correspond to Y = z, W = xz and Y = z, 
W = y respectively. The first choice leads to (6,  7, 5) = (-x, 0, z) and to the invariants 
u2 = y, u3 = xy’. In these coordinates (35) becomes 

du,/duz= U3/2U2 (36) 

U3 = K U 2  (37) 

which integrates to 

i.e. 

(dy/dx)’= Ky/x2. 

Similarly, the choice Y = z, W = y leads to the group coordinates (6,  7, 5) = (0, y, z) 
and to the invariants u2 = x and u3 = y’/y and to the equation 

du,/du,= -( ~ : / 2 +  ~ 3 /  u Z )  (39) 

which is non-linear. Both (38) and (39) can be integrated, for example, by finding 
invariances of these equations. However this is an additional reduction. 

On the other hand, choosing Y = z / x  gives rise to the following possibilities for 
W: W = y, W = z and W = z2. One can show that these are the only possibilities if 
we allow W to be a third degree polynomial in x, y and z. Consider the choice W = z2. 
It leads to to (5, 7,5) = (-xz, -zz, 0), u2 = xy’ and u3 = log x - y/y‘x. In these coordin- 
ates (35) reads 

duJdu2 = 0 (40) 

u3 = K (41) 

Y’lY = 2/(x log K,x)  (42) 

y = K2(log K,x)’ (43) 

which integrates to 

i.e. 

which is in quadrature. Integration yields 

which is the solution to our equation. 
In conclusion, mapping a differential equation to the most general associated vector 

field considerably enlarges the scope of previous theories of reduction of such equations. 
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The possibility of always being able to choose a contact transformation is a feature 
unique to the present work. To solve the direct problem for a second-order equation 
one needs to solve a single partial differential equation for two functions of three 
variables and although this equation contains many terms, it can readily be handled 
by a symbolic manipulation language such as REDUCE or SMP. A program has been 
written that finds the symmetries generated by polynomial W and rational Y for 
differential equations given by rational W [7]. The example given has been solved 
using that program. 

Appendix 

In modern differential geometry one defines a contact transformation as follows [ 6 ] .  
First define a contact 1-form by 

8 A d6 ZO. (All  

The infinitesimal generator of a contact transformation is then a vector field X 
such that 

Lx6 = A6 (A2) 

where Lx denotes the Lie derivative and where A is an arbitrary function. 

coordinates x, y, z and consider a 2-surface S such that the form 
In § 3 we have set dy ldx  = z. Now consider a three-dimensional space R3 with 

6 = d y  - z dx  (A31 

annihilates all vector fields tangent to S. 
We have 

dS = -dz A dx 

and 

6 A dS = -(dy-z dx)  A (dz A d x ) =  -dx A dy A dz # 0. 

S is therefore a contact 1-form. The vector field X = td ,  + 7aY+ l a ,  will be the 
infinitesimal generator of a contact transformation if 

LXS = y6. ('42) 
But 

and 

y6 = y(dy - .Z dx).  (Ab) 
Using (A2), (A5) and (A6), identifying the coefficients of dx, dy and dz and eliminating 
y we obtain 

('47) 77, - z52 = 0 

and 

5 = 77, + z( 7 7 y  - 5,) -- z2ty. 
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(A7) and (A8) are equivalent to the pair of equations (19) and (24) which are the 
conditions for a contact transformation with Y = z. Therefore, in the case where the 
contact form is given by (A3), the modern definition of a contact transformation 
coincides with our definition. Clearly, it also coincides with Lie’s since we showed 
that our definition coincides with Lie’s for the case Y = z. 

If we now consider the 1-form 

S = d y - Y ( x , y , z ) d x  (A91 

we can carry out the same argument and calculations as above. The result is that for 
X = (a, + Tay + l a ,  to be a contact transformation in the sense of modem differential 
geometry, we must have 

Tz - y52 = 0 (A101 

( A l l )  

and 

5 = 1% + Y(TY - 5 x 1  - 5 y x  - 5 Y y  - Y’5J yz. 

Equations (A10) and ( A l l )  are equivalent to the pair (17) and (29) showing that our 
generalised definition of a contact transformation stemming from algebraic grounds 
coincides with the modem differential geometric definition and goes beyond Lie’s 
original definition. 

We have therefore justified the term contact transformation, used throughout this 
paper, by both exhibiting the generating function and by showing it agrees with the 
modern definition of such transformations. 
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